تقطير المصفوفات
PostedMatrix Diagonalization
تعريف 1: المصفوفة A من الحجم n×n تدعى قطورة (أو قابلة للتقطير) إذا كنت مشابهة لمصفوفة قطرية، أي إذا وجدت مصفوفة P عكوسة (قابلة للإنعكاس) بحيث أن المصفوفة
تكون مصفوفة قطرية. عملية إيجاد P تسمى تقطيراً للمصفوفة A.
قد يدور تساؤل فيما إذا كانت كل مصفوفة مربعة قطورة ، والجواب هو: لا، توجد مصفوفات[م] لا تقبل التقطير .
مبرهنة[م] 1: المصفوفة A من الحجم n×n تكون قطورة إذا وفقط إذا كان لديها n متجهاً ذاتياً مستقلة خطياً[م].
البرهان:
لنفرض أن A قطورة، إذاً توجد مصفوفة عكوسة بحيث
قطرية. لتكن
عناصر القطر للرئيسي لـ D ، ولتكن
متجهات[م] الأعمدة لـ p ، فإن:
![PD = \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {\lambda _1 } & 0 & \ldots & 0 \\ 0 & {\lambda _2 } & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & {\lambda _n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {p_1 \lambda _1 } & {p_2 \lambda _2 } & {...} & {p_n \lambda _n } \\\end{array}} \right] PD = \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {\lambda _1 } & 0 & \ldots & 0 \\ 0 & {\lambda _2 } & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & {\lambda _n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {p_1 \lambda _1 } & {p_2 \lambda _2 } & {...} & {p_n \lambda _n } \\\end{array}} \right]](http://www.mathramz.com/math/files/tex/76c44294ea82a5681b7dbaf33b92eca5.png)
وبما أن
فإن
مما يؤدي إلى:
![\left[ {\begin{array}{*{20}c} {Ap_1 } & {Ap_2 } & {...} & {Ap_n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {\lambda _1 p_1 } & {\lambda _2 p_2 } & {...} & {\lambda _n p_n } \\\end{array}} \right] \left[ {\begin{array}{*{20}c} {Ap_1 } & {Ap_2 } & {...} & {Ap_n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {\lambda _1 p_1 } & {\lambda _2 p_2 } & {...} & {\lambda _n p_n } \\\end{array}} \right]](http://www.mathramz.com/math/files/tex/aa14de595e9b70fd1c2ffbe6da032f00.png)
بعبارة أخرى فإن
لكل متجه عمود
. وهذا بكل بساطة يعني أن المتجهات
عبارة متجهات ذاتية لـ A. ولكن بما أن P عكوسة لذا فإن أعمدتها مستقلة ذاتياً، أي مجموعة المتجهات الذاتية مستقلة خطياً.
لنفرض أنه يوجد n متجهاً ذاتياً مستقلة خطياً لـ A . لنن هذه المتجهات الذاتية هي
وقيمها الذاتية
. لنعرف المصفوفة P على الشكل:
. ولكن بما أن كل
هو متجه ذاتي لـ A ، لذا فإن
و:
![AP = A\left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {\lambda _1 p_1 } & {\lambda _2 p_2 } & {...} & {\lambda _n p_n } \\\end{array}} \right] AP = A\left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {\lambda _1 p_1 } & {\lambda _2 p_2 } & {...} & {\lambda _n p_n } \\\end{array}} \right]](http://www.mathramz.com/math/files/tex/41fb51df6439ea2085a612f503519f90.png)
الطرف الأيمن من المعادلة يمكن أن يكتب الشكل التالي:
![AP = \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {\lambda _1 } & 0 & \ldots & 0 \\ 0 & {\lambda _2 } & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & {\lambda _n } \\\end{array}} \right] = PD AP = \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {\lambda _1 } & 0 & \ldots & 0 \\ 0 & {\lambda _2 } & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & {\lambda _n } \\\end{array}} \right] = PD](http://www.mathramz.com/math/files/tex/18f9aea26f1d05d621052eab9b2a7cba.png)
وبما أن
مستقلة خطياً ، لذا فإن P عكوسة وبذلك نحصل على:
، أي أن A قطورة. 
إن المبرهنة 1 توفر لنا طريقة واضحة لكيفية تقطير المصفوفة A ، وذلك من خلال الخطوات التالية:
(تحت الإنشاء)
المراجع:
تعريف 1: المصفوفة A من الحجم n×n تدعى قطورة (أو قابلة للتقطير) إذا كنت مشابهة لمصفوفة قطرية، أي إذا وجدت مصفوفة P عكوسة (قابلة للإنعكاس) بحيث أن المصفوفة

قد يدور تساؤل فيما إذا كانت كل مصفوفة مربعة قطورة ، والجواب هو: لا، توجد مصفوفات[م] لا تقبل التقطير .
مبرهنة[م] 1: المصفوفة A من الحجم n×n تكون قطورة إذا وفقط إذا كان لديها n متجهاً ذاتياً مستقلة خطياً[م].
البرهان:

لنفرض أن A قطورة، إذاً توجد مصفوفة عكوسة بحيث



![PD = \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {\lambda _1 } & 0 & \ldots & 0 \\ 0 & {\lambda _2 } & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & {\lambda _n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {p_1 \lambda _1 } & {p_2 \lambda _2 } & {...} & {p_n \lambda _n } \\\end{array}} \right] PD = \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {\lambda _1 } & 0 & \ldots & 0 \\ 0 & {\lambda _2 } & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & {\lambda _n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {p_1 \lambda _1 } & {p_2 \lambda _2 } & {...} & {p_n \lambda _n } \\\end{array}} \right]](http://www.mathramz.com/math/files/tex/76c44294ea82a5681b7dbaf33b92eca5.png)
وبما أن


![\left[ {\begin{array}{*{20}c} {Ap_1 } & {Ap_2 } & {...} & {Ap_n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {\lambda _1 p_1 } & {\lambda _2 p_2 } & {...} & {\lambda _n p_n } \\\end{array}} \right] \left[ {\begin{array}{*{20}c} {Ap_1 } & {Ap_2 } & {...} & {Ap_n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {\lambda _1 p_1 } & {\lambda _2 p_2 } & {...} & {\lambda _n p_n } \\\end{array}} \right]](http://www.mathramz.com/math/files/tex/aa14de595e9b70fd1c2ffbe6da032f00.png)
بعبارة أخرى فإن




لنفرض أنه يوجد n متجهاً ذاتياً مستقلة خطياً لـ A . لنن هذه المتجهات الذاتية هي


![P
= \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} &
{p_n } \\\end{array}} \right] P
= \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} &
{p_n } \\\end{array}} \right]](http://www.mathramz.com/math/files/tex/283a66af8df760d30aa04ff47ca1143d.png)


![AP = A\left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {\lambda _1 p_1 } & {\lambda _2 p_2 } & {...} & {\lambda _n p_n } \\\end{array}} \right] AP = A\left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} {\lambda _1 p_1 } & {\lambda _2 p_2 } & {...} & {\lambda _n p_n } \\\end{array}} \right]](http://www.mathramz.com/math/files/tex/41fb51df6439ea2085a612f503519f90.png)
الطرف الأيمن من المعادلة يمكن أن يكتب الشكل التالي:
![AP = \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {\lambda _1 } & 0 & \ldots & 0 \\ 0 & {\lambda _2 } & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & {\lambda _n } \\\end{array}} \right] = PD AP = \left[ {\begin{array}{*{20}c} {p_1 } & {p_2 } & {...} & {p_n } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {\lambda _1 } & 0 & \ldots & 0 \\ 0 & {\lambda _2 } & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & {\lambda _n } \\\end{array}} \right] = PD](http://www.mathramz.com/math/files/tex/18f9aea26f1d05d621052eab9b2a7cba.png)
وبما أن



إن المبرهنة 1 توفر لنا طريقة واضحة لكيفية تقطير المصفوفة A ، وذلك من خلال الخطوات التالية:
- (1) أوجد n متجهاً ذاتياً مستقلة خطياً
مع قيمها الذاتية
. إذا كانت هذه المجموعة من المتجهات الذاتية غير موجودة فإنه لا يمكن تقطير A.
- (2) كون المصفوفة P بحيث
.
- (3) المصفوفة القطرية
ستكون عناصر قطرها الرئيسي هي
.
(تحت الإنشاء)
المراجع:
[1] T. Apostol, Linear Algebra, Wiley-Interscience, 1997. (اضغط هنا)
[2] K. Hoffman and R. Kunze, Linear Algebra, 2nd ed., Prentice Hall, 1971. (اضغط هنا)
This entry was posted
on 11:45 ص
.
You can leave a response
and follow any responses to this entry through the
الاشتراك في:
تعليقات الرسالة (Atom)
.